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Direct one-step synthesis of azaheterocyclic phosphonates
from diethyl x-chloro-1-alkynylphosphonates and hydrazines
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Abstract—Hydrazines react with 4-, 5- and 6-chloro-1-alkynylphosphonates to provide the corresponding azaheterocyclic phospho-
nates in good yields and purity. The suggested mechanism consists of initial addition to the carbon–carbon triple bond to generate a
zwitterionic species in which the amine is situated trans to the lone pair of the anion.
� 2007 Elsevier Ltd. All rights reserved.
Azacycloalkanes or their subunits occur in diverse natu-
ral products and in many drugs. For instance, tetrahyd-
ropyridazines display some interesting pharmacological
activities. They are antihypertensives,1 gylocosidase
inhibitors,2 influenza neurimidase inhibitors,3 c-amino-
butyrate-A-receptor modulators4 and nonsteroidal pro-
gesterone receptor ligands.5 The phosphorus group is
likewise part of many pharmacologically active com-
pounds.6 However, phosphorylated azacycloalkanes,
though potentially possessing significant intrinsic phar-
macological activity, are much less common. A major
reason for this is apparently their cumbersome synthesis.
For instance, 1,4,5,6-tetrahydropyridazin-4-ylphospho-
nates were obtained by reacting in situ prepared 1,2-
diaza-1,3-butadienylphosphonate with alkenes.7 The
difficulty in the latter reaction is the synthesis of the
1,2-diaza-1,3-butadienes. Similarly, 4,5-dihydropyraz-
oles possess anti-inflammatory and 8 anti-coagulating
activities9 and are KSP inhibitors,10 while 1,2-diazepines
are powerful progesterone antagonists.11 However,
phosphorylated 4,5-dihydropyrazoles and 1,2-diaze-
pines have not been described in the literature. As part
of our efforts on developing the chemistry of 1-
alkynylphosphonates,12 we investigated the reaction of
diethyl 4-, 5-, and 6-chloro-1-alkynylphosphonates with
hydrazines and examined their cyclization products.13 In
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this Letter, we report the results of our studies to
obtain tetrahydropyridazinylmethylphosphonates, 4,5-
dihydropyrazolylmethylphosphonates and 4,5,6,7-tetra-
hydrodiazepinylmethylphosphonates by reaction of x-
chloro-1-alkynylphosphonates with hydrazines (Scheme
1).

We found that x-chloro-1-alkynylphosphonates reacted
efficiently with hydrazines to produce azacycloalkanes
under mild conditions in the absence of metal or other
additives. There was no need for prior conversion to
iodides or in situ preparation of iodides. The ring size
of the azacycloalkanes was dependent on the chain
length of the x-chloro-1-alkynylphosphonate. For
instance, five-, six-, and seven-membered ring aza-
cycloalkenylphosphonates were obtained as a result of
the reactions between a hydrazine and 4-chloro, 5-
chloro, and 6-chloroalkynylphosphonates, respectively
(Table 1).14 Generally, the reactions were carried out
at room temperature and were complete within 30 min
as determined by GCMS, except for the reactions of
phenylhydrazine and 4-fluorophenylhydrazine with 5-
chloro-1-pentynylphosphonate, which required heating
to 60 �C for 4 h to attain the maximum yield. On the
P(O)(OEt)2 + NH2NHR

N
N

P(O)(OEt)2

R

n(  )

n=1,2,3

65-84%R=H,CH3,C6H5,
4-F-C6H4

Cl ( )

1

2

Scheme 1.

mailto:msrebni@md.huji.ac.il


Table 1. Azacycloalkanes, 2, from reaction of x-chloro-1-alkynyl-
phosphonates with hydrazines

N
N

P(O)(OEt)2

R

n(  )

Compound n R % Isolated yield (conversion)

2aa 1 H 75 (>98)
2bb 1 CH3 84 (>99)
2ca 2 H 81 (>99)
2da 2 CH3 85 (>99)
2ec 2 C6H5 65 (>99)
2fc 2 4-F-C6H4 67 (>98)
2ga 3 H 78 (>98)
2ha 3 CH3 79 (>99)

a Obtained at 25 �C in about 30 min.
b Obtained at 0 �C.
c Obtained at 60 �C in 4 h.
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other hand, in order to avoid the formation of side prod-
ucts, it was necessary to cool the reaction between meth-
ylhydrazine and 4-chloro-1-butynylphosphonate to give
2b, to 0 �C. The products 2a–h were stable enough to be
isolated by column chromatography on silica gel.

The methylenephosphonate protons in compounds 2
appeared as doublets in the region (d 2.71–2.90 ppm)
corresponding to two hydrogens on C-1 split by
phosphorus. Also, the presence of azacycles in com-
pounds 2, was consistent with the MS molecular weights
and fragmentation in addition to consistency of the
NMR data.

Mechanistically, the reaction can be rationalized by ini-
tial attack of the hydrazine on the carbon–carbon triple
bond to give a zwitterionic intermediate in which the
amine is situated trans to the lone pair of the anion
(and therefore cis to the phosphonate) and enjoys addi-
tional stabilization compared to the structure where the
amine is situated cis to the lone pair due to the hyper-
conjugation effects of carbanions.15 After proton trans-
fer the nitrogen of the hydrazine group attacks the C–
Cl bond in an SN2 fashion to furnish the azaheterocycle
rather than the intermediate undergoing C–C cycliza-
tion. Isomerization of the exo-cyclic double bond com-
pletes the mechanism (Scheme 2).
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In conclusion, a facile method for the synthesis of vari-
ous azaheterocyclic phosphonates by the reaction of
hydrazines and x-chloro-1-alkynylphosphonates has
been described. The products were obtained in good
yield and were stable to silica chromatography.
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